If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-30d=0
a = 1; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·1·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*1}=\frac{0}{2} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*1}=\frac{60}{2} =30 $
| 3x+2x+11.7=105.7 | | 9(3+2x)=10x+46 | | 3x^2+8x-78=0 | | 3x+2x+13=98 | | 156=8-y | | C=60/0.5+2.5x20 | | 2x+54=108 | | 3x+57=126 | | 7v-2=-9 | | C=0.5x60+2.5 | | |4m-5|=11 | | 4x+5=4x+11 | | 180(n-2)=174 | | -x+91=180 | | -4+2x=-22 | | 16x-88=72 | | 37-3x=7 | | 2(10-x)=3x+50 | | 4x+28=22 | | 5x+5=3x4 | | 1/2y-3=3-2y/3 | | 2x^2+x-195=0 | | 5(2x+1)=6(3x-1) | | 2340x=40 | | -3/4(2x+5)=12 | | 2(4a+8)-24=24 | | 2x-3(2-x)=9 | | 7(a-4)=2(a+5) | | −3/4p+2/5=21/2 | | −34p+25=212 | | 6q−9=5q+1 | | 8k-1=3k+34 |